Skip to main content

509. Fibonacci Number

Recursion

/*
* @lc app=leetcode id=509 lang=cpp
*
* [509] Fibonacci Number
*
* https://leetcode.com/problems/fibonacci-number/description/
*
* algorithms
* Easy (72.00%)
* Likes: 8563
* Dislikes: 381
* Total Accepted: 2.3M
* Total Submissions: 3.1M
* Testcase Example: '2'
*
* The Fibonacci numbers, commonly denoted F(n) form a sequence, called the
* Fibonacci sequence, such that each number is the sum of the two preceding
* ones, starting from 0 and 1. That is,
*
*
* F(0) = 0, F(1) = 1
* F(n) = F(n - 1) + F(n - 2), for n > 1.
*
*
* Given n, calculate F(n).
*
*
* Example 1:
*
*
* Input: n = 2
* Output: 1
* Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
*
*
* Example 2:
*
*
* Input: n = 3
* Output: 2
* Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
*
*
* Example 3:
*
*
* Input: n = 4
* Output: 3
* Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
*
*
*
* Constraints:
*
*
* 0 <= n <= 30
*
*
*/

// @lc code=start
class Solution {
public:
int fib(int n)
{
if(n < 2) return n;
return fib(n - 1) + fib(n - 2);
}
};
// @lc code=end
  • T: O(2N)O(2^N)
  • S: O(N)O(N)

DP

class Solution {
public:
int fib(int n)
{
if(n < 2) return n;
vector<int> dp(n + 1);
dp[0] = 0, dp[1] = 1;
for(int i = 2; i < n + 1; i++)
{
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
};
  • T: O(N)O(N)
  • S: O(N)O(N)

DP improved

class Solution {
public:
int fib(int n)
{
if(n < 2) return n;
int first = 1, second = 1;
for(int i = 2; i < n; i++)
{
int temp = first;
first = first + second;
second = temp;
}
return first;
}
};
  • T: O(N)O(N)
  • S: O(1)O(1)