120. Triangle
/*
* @lc app=leetcode id=120 lang=cpp
*
* [120] Triangle
*
* https://leetcode.com/problems/triangle/description/
*
* algorithms
* Medium (57.96%)
* Likes: 9775
* Dislikes: 567
* Total Accepted: 890K
* Total Submissions: 1.5M
* Testcase Example: '[[2],[3,4],[6,5,7],[4,1,8,3]]'
*
* Given a triangle array, return the minimum path sum from top to bottom.
*
* For each step, you may move to an adjacent number of the row below. More
* formally, if you are on index i on the current row, you may move to either
* index i or index i + 1 on the next row.
*
*
* Example 1:
*
*
* Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
* Output: 11
* Explanation: The triangle looks like:
* 2
* 3 4
* 6 5 7
* 4 1 8 3
* The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined
* above).
*
*
* Example 2:
*
*
* Input: triangle = [[-10]]
* Output: -10
*
*
*
* Constraints:
*
*
* 1 <= triangle.length <= 200
* triangle[0].length == 1
* triangle[i].length == triangle[i - 1].length + 1
* -10^4 <= triangle[i][j] <= 10^4
*
*
*
* Follow up: Could you do this using only O(n) extra space, where n is the
* total number of rows in the triangle?
*/
// @lc code=start
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle)
{
int n = triangle.size();
vector<int> dp = triangle.back();
for (int i = n - 2; i >= 0; i--)
{
for (int j = 0; j <= i; j++)
{
dp[j] = triangle[i][j] + min(dp[j], dp[j + 1]);
}
}
return dp[0];
}
};
// @lc code=end
- T:
- S: