Skip to main content

3219. Minimum Cost for Cutting Cake II

Hint

class Solution {
public:
int minimumCost(int m, int n, vector<int>& horizontalCut, vector<int>& verticalCut)
{
// Sorting the cuts in descending order to start from the largest piece

// Counters for horizontal and vertical pieces
// Variable to accumulate the minimum cost

// Loop until we have processed all possible cuts
while ()
{
// Compare the current largest horizontal cut with the current largest vertical cut
if ()
{
// Add the cost of the horizontal cut multiplied by the number of vertical pieces + 1
}
else
{
// Add the cost of the vertical cut multiplied by the number of horizontal pieces + 1
}
}

// If there are remaining horizontal cuts, add their costs
while ()
{

}

// If there are remaining vertical cuts, add their costs
while ()
{

}

// Return the accumulated minimum cost
}
};
#define ll long long
class Solution {
public:
long long minimumCost(int m, int n, vector<int>& horizontalCut, vector<int>& verticalCut)
{
// 因為會越切越多塊,所以 cost 要由大往小排
sort(horizontalCut.begin(), horizontalCut.end(), greater<int>());
sort(verticalCut.begin(), verticalCut.end(), greater<int>());

int hPieces = 0, vPieces = 0;
ll minCost = 0;

while (hPieces < m - 1 && vPieces < n - 1)
{
if (horizontalCut[hPieces] > verticalCut[vPieces])
{
minCost += horizontalCut[hPieces++] * (vPieces + 1);
}
else
{
minCost += verticalCut[vPieces++] * (hPieces + 1);
}
}

while (hPieces < m - 1)
{
minCost += horizontalCut[hPieces++] * (vPieces + 1);
}

while (vPieces < n - 1)
{
minCost += verticalCut[vPieces++] * (hPieces + 1);
}
return minCost;
}
};
  • T: O((m+n)log(m+n))O((m + n) \cdot \log (m + n))
  • S: O(m+n)O(m + n)