maximum-sum-of-distinct-subarrays-with-length-k
2461. Maximum Sum of Distinct Subarrays With Length K
You are given an integer array nums
and an integer k
. Find the maximum subarray sum of all the subarrays of nums
that meet the following conditions:
- The length of the subarray is
k
, and - All the elements of the subarray are distinct.
Return the maximum subarray sum of all the subarrays that meet the conditions_._ If no subarray meets the conditions, return 0
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,5,4,2,9,9,9], k = 3 Output: 15 Explanation: The subarrays of nums with length 3 are: - [1,5,4] which meets the requirements and has a sum of 10. - [5,4,2] which meets the requirements and has a sum of 11. - [4,2,9] which meets the requirements and has a sum of 15. - [2,9,9] which does not meet the requirements because the element 9 is repeated. - [9,9,9] which does not meet the requirements because the element 9 is repeated. We return 15 because it is the maximum subarray sum of all the subarrays that meet the conditions
Example 2:
Input: nums = [4,4,4], k = 3 Output: 0 Explanation: The subarrays of nums with length 3 are: - [4,4,4] which does not meet the requirements because the element 4 is repeated. We return 0 because no subarrays meet the conditions.
Constraints:
1 <= k <= nums.length <= 105
1 <= nums[i] <= 105
#define ll long long
class Solution {
public:
long long maximumSubarraySum(vector<int>& nums, int k) {
int n = nums.size();
ll res = 0, sum = 0;
unordered_map<int, int> freq;
for(int i = 0; i < k; i++) {
++freq[nums[i]];
sum += nums[i];
}
// base case
if(freq.size() == k)
res = sum;
int i = k;
for(int i = k; i < n; i++) {
++freq[nums[i]];
--freq[nums[i - k]];
if(freq[nums[i - k]] == 0)
freq.erase(nums[i - k]);
sum += nums[i];
sum -= nums[i - k];
// 維持 freq 的長度要等於 3
// 也就是 distinct element = 3
if(freq.size() == k)
res = max(res, sum);
}
return res;
}
};
- T:
- S: