Skip to main content

98. Validate Binary Search Tree

Given the root of a binary tree, determine if it is a valid binary search tree (BST).

A valid BST is defined as follows:

  • The left

    subtree

    of a node contains only nodes with keys less than the node's key.

  • The right subtree of a node contains only nodes with keys greater than the node's key.

  • Both the left and right subtrees must also be binary search trees.

Example 1:

image

Input: root = [2,1,3] Output: true

Example 2:

image

Input: root = [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.

Constraints:

  • The number of nodes in the tree is in the range [1, 104].
  • -231 <= Node.val <= 231 - 1
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
return isValid(root, nullptr, nullptr);
}
bool isValid(TreeNode* root, TreeNode* left, TreeNode* right) {
if(!root) return true;

// 其中一個條件不符合就 return false
// 如果左邊 node 存在,且大於等於 root 的值
// 如果右邊 node 存在,且 root 的值大於等於右邊 node 的值
if((left && left->val >= root->val) || right && root->val >= right->val)
return false;

// 走訪左邊的樹,最大值為 root,走訪右邊的樹,最小值為 root
return isValid(root->left, left, root) && isValid(root->right, root, right);
}
};
  • T: O(N)O(N)
  • S: O(N)O(N)