Skip to main content

399. Evaluate Division

You are given an array of variable pairs equations and an array of real numbers values, where equations[i] = [Ai, Bi] and values[i] represent the equation Ai / Bi = values[i]. Each Ai or Bi is a string that represents a single variable.

You are also given some queries, where queries[j] = [Cj, Dj] represents the jth query where you must find the answer for Cj / Dj = ?.

Return the answers to all queries. If a single answer cannot be determined, return -1.0.

Note: The input is always valid. You may assume that evaluating the queries will not result in division by zero and that there is no contradiction.

**Note:**The variables that do not occur in the list of equations are undefined, so the answer cannot be determined for them.

Example 1:

Input: equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]] Output: [6.00000,0.50000,-1.00000,1.00000,-1.00000] Explanation: Given: a / b = 2.0, b / c = 3.0 queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? return: [6.0, 0.5, -1.0, 1.0, -1.0 ] note: x is undefined => -1.0

Example 2:

Input: equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]] Output: [3.75000,0.40000,5.00000,0.20000]

Example 3:

Input: equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]] Output: [0.50000,2.00000,-1.00000,-1.00000]

Constraints:

  • 1 <= equations.length <= 20
  • equations[i].length == 2
  • 1 <= Ai.length, Bi.length <= 5
  • values.length == equations.length
  • 0.0 < values[i] <= 20.0
  • 1 <= queries.length <= 20
  • queries[i].length == 2
  • 1 <= Cj.length, Dj.length <= 5
  • Ai, Bi, Cj, Dj consist of lower case English letters and digits.
class Solution {
public:
// 用 map 儲存 a/b, b/c 和結果的關係
// 以 graph 的題目來說,會有一點類似 adjacencyt list 的感覺
// {
// {"a", {"b": 2.0}},
// {"b", {"a": 1/2.0}},
// {"b", {"c": 3.0}},
// {"c", {"b": 1/3.0}},
// }
unordered_map<string, unordered_map<string, double>> graph;
vector<double> calcEquation(vector<vector<string>>& equations, vector<double>& values, vector<vector<string>>& queries) {
for (int i = 0; i < equations.size(); ++i) {
string A = equations[i][0];
string B = equations[i][1];
graph[A][B] = values[i];
graph[B][A] = 1.0 / values[i];
}

vector<double> res;

for (auto q : queries) {
// 如果沒在分母或分子的話,返回 -1.0
if(!graph.count(q[0]) || !graph.count(q[1])) {
res.push_back(-1.0);
continue;
}
// 每次的 query,都要新的 seen hashset
unordered_set<string> seen;
res.push_back(dfs(q[0], q[1], seen));
}
return res;
}
double dfs(string up, string down, unordered_set<string>& seen) {
// 如果在 graph 看到有對應的值,直接返回值是多少
if (graph[up].count(down))
return graph[up][down];

// iterate graph 的分子
for (auto a : graph[up]) {
// 如果已經走訪過的,略過
if (seen.count(a.first)) continue;

// 將走訪的值插入到 set 裡
seen.insert(a.first);

// d = C / B
double t = dfs(a.first, down, seen);
// A / B = C / B * A / C
if (t > 0.0) return t * a.second;
}
return -1.0;
}
};
  • T: O(MN)O(M \cdot N)
  • S: O(N)O(N)