Skip to main content

547. Number of Provinces

Hint

class UnionFind {
private:
// Stores the parent of each node
// Stores the rank (size) of each tree

public:
// Constructor to initialize the Union-Find data structure
UnionFind()
{
// Resize parent vector to hold n elements
// Initialize rank vector with 1 for each node
for ()
{
// Initially, each node is its own parent
}
}

// Find the root of the set containing x, with path compression
int find(int x)
{
}

// Union the sets containing n1 and n2
void unionNodes(int n1, int n2)
{
// Find the root of the set containing n1
// Find the root of the set containing n2

// If both nodes are already in the same set, do nothing

// Union by rank
if ()
{
// Make p1 the root of p2
// Update the rank of the new root
}
else
{
// Make p2 the root of p1
// Update the rank of the new root
}
}
};

class Solution {
public:
int findCircleNum(vector<vector<int>>& isConnected)
{
// Initialize the Union-Find data structure

// Start with the assumption that there are n disconnected components
for ()
{
for ()
{
if ()
{
// If i and j are connected and belong to different components, decrement count
// Union the components of i and j
}
}
}
// Return the number of connected components
}
};
  • Union Find
class UnionFind {
private:
vector<int> parent;
vector<int> rank;
public:
UnionFind(int n)
{
parent.resize(n);
rank.resize(n, 1);
for (int i = 0; i < n; i++)
{
parent[i] = i;
}
}

int find(int x)
{
if (x != parent[x])
{
parent[x] = find(parent[x]);
}
return parent[x];
}

void unionNodes(int n1, int n2)
{
int p1 = find(n1);
int p2 = find(n2);

if (p1 == p2) return;

if (rank[p1] > rank[p2])
{
parent[p2] = p1;
rank[p1] += rank[p2];
}
else
{
parent[p1] = p2;
rank[p2] += rank[p1];
}
}
};

class Solution {
public:
int findCircleNum(vector<vector<int>>& isConnected)
{
int n = isConnected.size();
UnionFind uf(n);

int cnt = n;
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
if (isConnected[i][j] && uf.find(i) != uf.find(j))
{
cnt--;
uf.unionNodes(i, j);
}
}
}
return cnt;
}
};
  • T: O(n2)O(n^2)
  • S: O(n)O(n)