Skip to main content

5. Longest Palindromic Substring

Hint - Brute-force

class Solution {
public:
string longestPalindrome(string s)
{
// Start with the longest possible substring and reduce the length until we find a palindrome
for ()
{
// Check all substrings of length 'j'
for ()
{
// If the substring s.substr(i, j) is a palindrome, return it as the result
if ()
{
}
}
}
// If no palindrome is found (which is unlikely since single characters are palindromes), return an empty string
}

// Helper function to check if a given string 's' is a palindrome
bool isPalindrome(string s)
{
// Initialize two pointers at the start and end of the string
// Check characters from both ends moving towards the center
while ()
{
// If characters at pointers do not match, it's not a palindrome
// Move the pointers closer to the center
}
// If all characters matched, the string is a palindrome
}
};
  • Brute-force
class Solution {
public:
string longestPalindrome(string s)
{
int n = s.size();
for (int j = n; j > 0; --j)
{
for (int i = 0; i <= n - j; i++)
{
if (isPalindrome(s.substr(i, j)))
{
return s.substr(i, j);
}
}
}
return "";
}

bool isPalindrome(string s)
{
int i = 0, j = s.size() - 1;
while (i < j)
{
if (s[i] != s[j])
{
return false;
}
++i; --j;
}
return true;
}
};
  • T: O(N3)O(N^3)
  • S: O(1)O(1)

Hint - Expand From Centers

class Solution {
public:
string longestPalindrome(string s)
{
// Initialize the result string to store the longest palindrome found
// Initialize current length and maximum length of palindrome found

// Iterate over each character in the string as the center of a potential palindrome
for ()
{
// Case 1: Odd length palindrome with center at 'i'
// Expand around the center while characters on both sides are equal
while ()
{
// Calculate current palindrome length
// Update result if a longer palindrome is found
// Move left pointer to the left and right pointer to the right
}

// Case 2: Even length palindrome with centers at 'i' and 'i+1'
// Expand around the centers while characters on both sides are equal
while ()
{
// Calculate current palindrome length
// Update result if a longer palindrome is found
// Move left pointer to the left and right pointer to the right
}
}
// Return the longest palindromic substring found
}
};
  • Expand From Centers
class Solution {
public:
string longestPalindrome(string s)
{
string res = "";
int curLen = 0, maxLen = 0;
for (int i = 0; i < s.size(); ++i)
{
int left = i, right = i;
while (left >= 0 && right < s.size() && s[left] == s[right])
{
curLen = right - left + 1;
if (curLen > maxLen)
{
res = s.substr(left, curLen);
maxLen = curLen;
}
--left; ++right;
}

left = i, right = i + 1;
while (left >= 0 && right < s.size() && s[left] == s[right])
{
curLen = right - left + 1;
if (curLen > maxLen)
{
res = s.substr(left, curLen);
maxLen = curLen;
}
--left; ++right;
}
}
return res;
}
};
  • T: O(N2)O(N^2)
  • S: O(1)O(1)

Hint - Manacher's Algorithm

class Solution {
public:
string longestPalindrome(string s)
{
// Transform the original string to avoid even-length palindrome issues by inserting '#'
// between every character and at the beginning and end.

// Length of the transformed string

// Array to store the length of the palindrome radius for each center

// Center and radius of the rightmost palindrome found

for ()
{
// Mirror of the current index i with respect to the current center

// If within the bounds of the current known palindrome, use the mirror's palindrome length

// Attempt to expand the palindrome centered at i

// Update the center and radius if the expanded palindrome at i goes beyond the current known radius
}

// Find the longest palindrome in the transformed string

// Calculate the start index of the longest palindrome in the original string

// Return the longest palindrome substring from the original string
}
};
  • Manacher's Algorithm
class Solution {
public:
string longestPalindrome(string s)
{
string t = "#";
for (char c : s)
{
t += c;
t += "#";
}

int n = t.size();

vector<int> p(n, 0);

int center = 0, radius = 0;

for (int i = 0; i < n; i++)
{
int mirror = 2 * center - i;

if (i < radius)
{
p[i] = min(radius - i, p[mirror]);
}

while (i + 1 + p[i] < n && i - 1 - p[i] >= 0 && t[i + 1 + p[i]] == t[i - 1 - p[i]])
{
p[i]++;
}

if (i + p[i] > radius)
{
center = i;
radius = i + p[i];
}
}

int maxLen = 0;
int centerIndex = 0;
for (int i = 0; i < n; i++)
{
if (p[i] > maxLen)
{
maxLen = p[i];
centerIndex = i;
}
}

int startIndex = (centerIndex - maxLen) / 2;

return s.substr(startIndex, maxLen);
}
};
  • T: O(n)O(n)
  • S: O(n)O(n)