maximum-sum-circular-subarray
918. Maximum Sum Circular Subarray
Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray ofnums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3] Output: -2 Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
class Solution {
public:
int maxSubarraySumCircular(vector<int>& nums) {
int curMax = 0, curMin = 0;
int maxSum = nums[0], minSum = nums[0];
int totalSum = 0;
for(int num : nums) {
curMax = max(curMax + num, num);
maxSum = max(maxSum, curMax);
curMin = min(curMin + num, num);
minSum = min(minSum, curMin);
totalSum += num;
}
if(totalSum == minSum) {
return maxSum;
}
return max(maxSum, totalSum - minSum);
}
};
- T:
- S: