跳至主要内容

3234. Count the Number of Substrings With Dominant Ones

Hint

class Solution {
public:
int numberOfSubstrings(string s)
{
// To store the count of valid substrings
// Vector to store prefix sums of '1's

// Compute prefix sums for the number of '1's
// Initialize the first element based on the first character
// Compute prefix sums for the rest of the array

// Iterate over each possible starting index of the substring
for ()
{
// Iterate over each possible ending index of the substring
for ()
{
// Calculate the number of '1's and '0's in the current substring s[i..j]

// CASE 1: Substring is not dominant
if ()
{
// Adjust the end pointer j to skip over non-dominant substrings
}

// CASE 2: Substring is exactly dominant
else if ()
{
// Count this substring as valid
}
// CASE 3: Substring is more dominant
else if ()
{
// Count this substring as valid
// Calculate how many more substrings are valid by skipping forward
// Determine the next position to skip to

// If skipping exceeds the string length, count all remaining substrings
if ()
{
}
else
{
// Otherwise, count substrings within bounds
}

// Update j to the next valid position
}
}
}
// Return the total count of valid substrings
}
};
class Solution {
public:
int numberOfSubstrings(string s)
{
int n = s.size(); // Length of the input string
int res = 0; // To store the count of valid substrings
vector<int> prefix(n, 0); // Vector to store prefix sums of '1's

// Compute prefix sums for the number of '1's
prefix[0] = (int)(s[0] - '0'); // Initialize the first element based on the first character
for (int i = 1; i < n; i++)
{
prefix[i] = prefix[i - 1] + (int)(s[i] - '0'); // Compute prefix sums for the rest of the array
}

// Iterate over each possible starting index of the substring
for (int i = 0; i < n; i++)
{
// Iterate over each possible ending index of the substring
for (int j = i; j < n; j++)
{
// Calculate the number of '1's and '0's in the current substring s[i..j]
int ones = prefix[j] - (i == 0 ? 0 : prefix[i - 1]);
int zeros = (j - i + 1) - ones;

// CASE 1: Substring is not dominant
if (zeros * zeros > ones)
{
// Adjust the end pointer j to skip over non-dominant substrings
j += (zeros * zeros - ones - 1);
}
// CASE 2: Substring is exactly dominant
else if (zeros * zeros == ones)
{
++res; // Count this substring as valid
}
// CASE 3: Substring is more dominant
else if (zeros * zeros < ones)
{
++res; // Count this substring as valid
// Calculate how many more substrings are valid by skipping forward
int diff = (int) sqrt(ones) - zeros;
int nextj = j + diff; // Determine the next position to skip to

// If skipping exceeds the string length, count all remaining substrings
if (nextj >= n)
{
res += (n - j - 1);
}
else
{
res += diff; // Otherwise, count substrings within bounds
}
// Update j to the next valid position
j = nextj;
}
}
}
return res; // Return the total count of valid substrings
}
};
  • T: O(nn)O(n \sqrt n)
  • S: O(n)O(n)