跳至主要内容

994. Rotting Oranges

You are given an m x n grid where each cell can have one of three values:

  • 0 representing an empty cell,
  • 1 representing a fresh orange, or
  • 2 representing a rotten orange.

Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.

Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1.

Example 1:

image

Input: grid = [[2,1,1],[1,1,0],[0,1,1]] Output: 4

Example 2:

Input: grid = [[2,1,1],[0,1,1],[1,0,1]] Output: -1 Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.

Example 3:

Input: grid = [[0,2]] Output: 0 Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 10
  • grid[i][j] is 0, 1, or 2.
class Solution {
public:
int orangesRotting(vector<vector<int>>& grid) {
int rows = grid.size(), cols = grid[0].size();

// 用來存花了多少分鐘
int minutes = 0;

// 用來存剩下多少橘子
int fresh = 0;
queue<pair<int, int>> q;
for(int i = 0; i < rows; i++) {
for(int j = 0; j < cols; j++) {
// 如果遇到 1,新鮮橘子 + 1
if(grid[i][j] == 1) fresh++;
// 如果遇到 2,壞橘子推到 queue
else if(grid[i][j] == 2) q.push({i, j});
}
}

vector<vector<int>> directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

while(!q.empty() && fresh > 0) {
int qSize = q.size();
for(int i = 0; i < qSize; i++) {
auto node = q.front(); q.pop();
for(auto& dir : directions) {
int new_r = node.first + dir[0];
int new_c = node.second + dir[1];
// 遇到超出邊界的、不是好橘子的都略過
if(new_r < 0 || new_c < 0 || new_r >= rows || new_c >= cols || grid[new_r][new_c] != 1)
continue;

// 標記新的格子已經是壞橘子
grid[new_r][new_c] = 2;
q.push({new_r, new_c});
fresh--;
}
}
// queue 搜索完一輪,minutes++
minutes++;
}
// 判斷最後還有新鮮橘子,return -1
return fresh == 0 ? minutes : -1;
}
};
  • T: O(MN)O(M \cdot N)
  • S: O(MN)O(M \cdot N)